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Abstract—With ongoing developments in digitalization and
advances in the field of autonomous driving, on-demand ride
pooling is a mobility service with the potential to disrupt the
urban mobility market. Nevertheless, to apply this kind of service
successfully efficient algorithms have to be implemented for
effective fleet management to exploit the benefits associated with
this mobility service. Especially real time computation of finding
beneficial assignments is a problem not solved for large problem
sizes until today. In this study, we show the importance of using
advanced algorithms by comparing a fast, but simple insertion
heuristic algorithm with a state-of-the-art multi-step matching
algorithm. We test the algorithms in various scenarios based
on private vehicle trip OD-data for Munich, Germany. Results
indicate that in the tested scenarios by using the multi-step
algorithm up to 8% additional requests could be served while
also 10% additional driven distance could be saved. However,
computational time for finding optimal assignments in the ad-
vanced algorithm exceeds real time rather fast as problem size
increases. Therefore, several aspects to reduce the computational
time by decreasing redundant checks of the advanced multi
step algorithm are introduced. Finally, a refined vehicle selection
heuristic based on three rules is presented to furthermore reduce
the computational effort. In the tested scenarios this heuristic can
speed up the most cost intensive algorithm step by a factor of over
8, while keeping the number of served requests almost constant
and maintaining around 70% of the driven distance saved in the
system. Considering all algorithm steps, an overall speed up of
2.5 could be achieved.

Index Terms—Fleet management, Ride-pooling, Mobility Ser-
vice, Mobility On-Demand, Heuristic, VMT, Algorithm

I. INTRODUCTION

The global growth of population and the resulting urbaniza-
tion stretches the limits of cities’ resources and infrastructure
all over the world. Rising demand on transportation tends to
congest street networks for an increasing fraction of the day,
leading to waste of energy, air pollution, economic costs and
personal stress for vehicles’ drivers. Especially private vehicle
trips have a big influence on the exceeded network capacities
due to their highly ineffective way of transport induced by low
average occupancy and high space consumption.

With recent developments in digitalization and communi-
cation on-demand mobility systems (ODM) started to emerge
rapidly with no end of growth in sight [1]. Among many sub-
groups of ODM-systems like car-sharing or taxi-like systems,
On-Demand Ride-Pooling (ODRP) is a promising candidate to
improve conditions in urban traffic. In this mobility service an
operator matches customers with similar travel requests, based
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on travel origins, destinations and points in time, whereby
these customers can share parts of their trips leading to
higher vehicle occupancy and therefore increased effectivity
of transport.

Recent theoretical studies regarding ride-pooling showed,
that the probability of matching two customers exponentially
approaches one with increasing demand in a ride-pooling
system [2]. Because, also the prices for a trip can be
shared among customers, a successful implementation may
lead to a positive feedback reaction between price and demand,
especially once the cost for an ODRP trip undercuts the costs
for a trip with the private vehicle [3]. Additionally, the
introduction of autonomous driving may act as a catalyst for
ODRP systems, because the largest cost component, the driver,
will be removed from the business model.

In order to provide such a mobility service an operator has
to implement an efficient algorithm to match customers and
assign resulting trips to its operating vehicles in a best possible
way to optimize its objectives like cost reduction or reduced
customer inconveniences. Besides effective fleet management,
replies to customers’ requests have to be provided in short
terms to satisfy the customers’ needs. However, since Ride-
Pooling can be formulated as a dynamic vehicle routing
problem [4], the NP-hard formulation of the problem results
in exploding computational time even for medium system
sizes, preventing precise short-term replies based on good
solutions. The curse of dimensionality becomes a problem
even for single-occupancy algorithms when coordinated rout-
ing is considered [5]. For ride-pooling, the theoretical amount
of possibilities to combine multiple requests into tours of
multiple vehicles grows exponentially even with pre-processed
routes between all access points of users: O(mnµ), where
m is the number of vehicles, n the number of requests and
µ the maximum amount of requests per vehicle [6]. Among
the simplest known approaches to ride-pooling are rule-based
insertion heuristics [7] [8] [9]. Jung et al. [7] illustrate the
benefits of using hybrid simulated annealing over an insertion
heuristic in a study where shared taxis serve up to 18k requests
in a 4-hour period in real-time. Santi et al. [10] introduce the
concept of vehicle share-ability networks, which translates the
vehicle routing problem into a graph problem with efficient
solution.

Alonso-Mora et al. [6] introduced a multi-step algorithm for
the ODRP-problem on which this paper is built on. Making
use of share-ability networks and hard time constraints in
possible routes, the ODRP-problem can be decoupled effi-
ciently and problem sizes of the magnitude of Manhattan’s



taxi demand could be simulated in reasonable time. However,
computational time still increases rapidly especially as fleet
size increases. For their study in Manhattan, NYC, Alonso-
Mora et al. report exceeding real time on a 24-core computer
with a fleet size of 3000 vehicles [11]. We also observe
a similar value for our in the following described study in
Munich, Germany without any heuristics.

To overcome these limitations, we therefore describe in this
work several methods to improve the algorithm proposed in
[6]. Among these aspects is search space pruning, which was
also proposed by [12]. Furthermore, we introduce a heuristic
to limit the number of possible vehicles per request based on
three rules to decrease the search space additionally. Finally,
we compare the performance with a simple insertion heuristic
to stress the importance of the matching algorithm for effective
fleet management.

The rest of the paper is structured as follows: In section II
we describe the simulation setup and the algorithm, in section
III we present comparisons of performance for the different
algorithms for our case study of Munich, Germany. Finally,
section IV concludes this study.

II. RESEARCH METHODOLOGY

In this section, we explain the basic setup of the agent-
based simulation framework that we developed to model
the matching of on-demand requests and vehicles. We start
describing the basic simulation setup and the customer model
defining the constraints of the allowed tours for the matching
algorithms. Finally, the different fleet operator policies and
matching algorithms are explained in detail.

A. Basic Setup

In this study, we model customers, vehicles and a fleet
operator, as agents. They interact on a street network graph
G = (N,E), where N are nodes and E are edges of the street
network. An edge e ∈ E has a time-dependent travel time
te(t), which is used by the operator for route calculations.
Moreover, all vehicles require the same te(t) to travel through
this edge. Na ⊂ N is a set of access points, where customers
can start and end their trip.

We define a route as a sequence of elements of G combining
an origin o ∈ G and a destination d ∈ G. Furthermore, we
define a tour as a sequence of routes that can be separated
by stops at access points, where customers can board or leave
a vehicle. Boarding and disembarking require the vehicle to
stop for TB , the boarding time, at an access point.

The simulation runs for 24 hours and every time step ∆t,
the status of the fleet of vehicles is updated, i.e. vehicles
with assigned tours either move closer to their next stop or
customers board or leave the vehicle. In this model, the fleet
operator does not make the decision to re-assign tours to its
vehicles every time step ∆t; instead decisions are made every
∆T dec, which we denote by decision time step. This reflects
the fact that the decision making process can last more than ∆t
and decisions in a real-time framework would not be updated
every ∆t [13].

Fig. 1. Flowchart describing the agent-based model with the different fleet
operator policies.

B. Customer Model

A customer’s request (e.g. made by smartphone app) is
initially defined by three values: an origin or ∈ Na, where
a trip is supposed to start, a destination dr ∈ Na, where a trip
is supposed to end, and implicitly the time tr when the request
is sent. Directly inferred by these parameters is the customer’s
direct route, which we define as the shortest path connecting
or and dr on G with respect to travel time. Moreover, tdirectr

and ddirectr are the travel time and the distance for this route,
respectively.

In this study, customers allow a certain maximum detour
time. We assume that the maximum detour time δ is related
to the travel time of the direct route tdirectr from or to dr:
δ = ∆detour·tdirectr . Additionally, we assume that a customer
is only willing to wait for a pick-up a certain amount of time
tmaxwait. Therefore, a vehicle has to reach this customer before
tlp = tr+tmaxwait. Similar to Boesch et al. [14], we assume that a
customer will already make the request before being available
for pick-up at the origin or, hence she will need a minimum
waiting time of tminwait to be ready. Therefore, a vehicle has to
wait until the earliest possible pick-up time tep = tr + tminwait

if it arrives at or before that.

The information process is also an important service qual-
ity feature, which impacts the possibility of assignment re-
optimization. We assume that a customer will accept a service
offer in short notice, which we define as one decision time
step. If no vehicle is assigned to serve this request after this
decision time step, the customer will leave the system. This
behavior is shown in the Flowchart of Fig. 1.



C. Fleet Operator Policy

The fleet operator’s task is to use its vehicles with capacity
µ to maximize an objective or a set of objectives. A policy
is a set of rules that the fleet operator uses to achieve these
objectives. These rules dictate how customers are added to
tours and which tours are assigned to vehicles. The objective
in this study is to serve as many customers as possible while
finding assignments that maximize “saved VMT”, which for
a single tour ξ we define as the difference between the sum
of the direct route distances ddirectr of all requests r involved
in a tour, and the distance of the tour dξ:

U [ξ] =

∑
r∈ξ

ddirectr

− dξ (1)

In this work, the policy dictates that the operator just allows
feasible tours, which on the on hand satisfy the time con-
straints of all requests, which are part of that tour, and on the
other hand the number of customers on board never exceed
the vehicle capacity µ. This objective function is different
from [6], where the sum of detour and waiting time of users
was minimized, which can prioritize driving users exclusively
in case of vehicle surplus.

We implement two policies in this study: A basic, but very
fast insertion heuristic and an advanced ODRP algorithm based
on [6]. We will explain the simpler insertion heuristic before
outlining the more complex algorithm and its benefits. Lastly,
we introduce a heuristic for the advanced ODRP algorithm to
decrease computational effort while keeping the performance
as high as possible. The flowchart for the simulation frame-
work is shown in Fig. 1

1) Insertion Heuristic Policy: In this policy, the fleet oper-
ator processes all unassigned requests sequentially. For every
unassigned request r and every vehicle vx, new possible tours
are created by inserting stops for boarding at or and leaving
at dr into the tour currently assigned to the vehicle. The
fleet operator checks all possible permutations for feasibility
and the utility function U defined in Eqn. 1 is computed for
all feasible tours. For each vehicle vx, the utility function
of all feasible tours including request r, denoted by {ξxr },
are compared with the utility of the original tour ξx0 (before
including request r):

∆Ux = max
ξ∈{ξxr }

(U [ξ]− U [ξr0 ]) (2)

The operator designates the vehicle vx with the highest in-
crease in utility ∆Ux to serve request r by assigning the tour
corresponding to Eqn. 2.

The weakness of this insertion heuristic is that it neglects
benefits from global optimization and re-assignments. Instead
of trying to optimize the system globally, the insertion heuristic
assigns requests sequentially. However, dynamic systems, like
the agent-based model used in this study, benefit from dynamic
solutions with re-assignments. Fixing the assignments, as the
heuristic does, restrains the solution space and prevents this
algorithm from finding better solutions.

2) Advanced ODRP Re-Optimization Policy: A possible
option to overcome the limitations of the insertion heuristic
is to generate all feasible tours for each vehicle and assign
the best ones by global optimization. Unlike the insertion
heuristic, this approach does not induce an order and re-
optimization may change previous assignments in case a better
solution is found. On the flipside, even with pre-processed
routes between all access points, the task of creating and
updating all feasible routes in real-time is troublesome be-
cause of the curse of dimensionality. In an exhaustive search
algorithm, all possible tours, i.e. every possible permutation
of stops for every possible combination of requests for every
single vehicle, are created and checked for feasibility. For this
reason, this approach cannot scale and the limit for real-time
operability is reached for very small problem instances.

Our policy is based on the work of Alonso-Mora et al. [6],
who developed a multi-stage graph-based approach in or-
der to reduce the amount of explicit feasibility checks. To
elaborate the key points that allow an incredible speed up
compared to an exhaustive search procedure, we define an
object called Vehicle-To-Request-Bundle (V2RB). A V2RB
Ψ(vx|ri1, ri2, ri3, . . . , rin) contains all feasible tours, i.e. fea-
sible permutations of pick-up and drop-off locations (and
routes connecting these locations) of vehicle vx, that serve
exactly the set of requests {ri1, ri2, ri3, . . . , rin} named a
request-bundle. We call a V2RB of grade n if this bundle
contains exactly n requests.

Since the number of possible stop combinations grows
exponentially with n, reducing the amount of V2RBs and
stop combinations for a V2RB that need to be checked, will
lead to great savings in computational effort compared to an
exhaustive search. Therefore, there are mainly four key points
to check before building a new V2RB:

1) Request-to-Vehicle (RV) compatibility: If the vehicle
vx cannot reach the requests origin before the latest
pick-up time associated with this request, a V2RB
Ψ(vx|ri1, ri2, ri3, . . . , rin) containing vehicle vx and
request ri1 is not built.

2) Request-to-Request (RR) compatibility: If there is
no feasible tour connecting the origins and desti-
nations of request ri1 and request ri2, a V2RB
Ψ(vx|ri1, ri2, ri3, . . . , rin) containing these requests is
not built for any vehicle vx.

3) A V2RB Ψ(vx|ri1, ri2, ri3, . . . , rin) of grade n cannot
be built before building VBRBs of lower grades con-
taining a subset of the request-bundle. E.g. if the V2RB
Ψ(vx|r1, r2), i.e. feasible tours serving request r1 and
request r2 within their time windows does not exist,
there is no possibility to find feasible tours for r1,r2 and
r3 (The V2RB Ψ(vx|r1, r2, r3) cannot be feasible, too).
Additionally, building the higher grade V2RB for a new
request rx upon the corresponding lower one (without
that request) saves large amount of stop combinations
need to be checked: Instead of checking all possible
permutations of stops, only insertions of orx and drx
into the list of feasible tours of the lower V2RB have to



be considered.
4) All on-board requests have to be included in V2RBs

Ψ(vx|ri1, ri2, ri3, . . . , rin) of a vehicle.
The key difference of our approach with that of Alonso-Mora
et al. [6] is that they rebuild all these objects from scratch in
every single decision time step, while we keep the computed
V2RBs stored in a database in order to reduce the number
of needed checks in the next decision time step. Our idea is
that it is not necessary to check all possible permutations of
stops again; instead, we only check if the previously feasible
tours in the V2RB Ψ(vx|ri1, ri2, ri3, . . . , rin) are still feasible.
Between decision time steps, the status of a previously feasible
tour can change as vehicles could move or customers could
board or leave a vehicle. For example, as a vehicle vx moves
along its assigned tour in direction of stop A, there can be
tours in the V2RBs Ψ(vx|ri1, ri2, ri3, . . . , rin) of this vehicle,
where another first stop B cannot be reached in time anymore.
Likewise, there is no point of keeping possible tours that do
not contain the customer, who has just boarded the vehicle.

While [12] also keep already computed RV and RR com-
patibilities in memory, we also store all computed V2RBs
containing all feasible stop combinations. Thereby, in most
cases, the order of the stops in feasible routes don’t have to
be recomputed again in the next optimization step.

Summarizing, the fleet operator conducts following steps
one-after-another in each decision time step in order to find
all feasible V2RBs: (i) compute RV and RR compatibility for
new requests (key point 1 and 2); (ii) update existing V2RBs;
for unassigned requests (iii) compute new V2RBs from low to
high grades based on existing ones following key point 3. Even
by using this approach the computation time is exceeding the
real time, also for low levels of demand. Therefore, computing
V2RBs for different vehicles on different processor cores in
parallel, can decrease the computational time by magnitudes.

After that, we perform a global optimization process in
order to find the system’s optimal assignments in each decision
time step. At this stage, each of the possible tours of a V2RB
is rated by the utility function defined in equation (1) and each
V2RB itself is rated by the best utility value of its tours and
represented by this tour.

In this study, the objective of the fleet operator is to
maximize the sum of these utility values representing “saved
VMT” of all assigned tours, while serving as many requests
as possible. This optimization problem can be formulated as
an Integer Linear Problem in the following way:

max
zjk

∑
j,k

ujkzjk −
∑
j

Pxi (3)

s.t.
∑

k∈K(i)

∑
j

zjk + xi = 1 ∀i|ri ∈ Ru (4)

∑
k∈K(i)

∑
j

zjk = 1 ∀i|ri ∈ Ra (5)

∑
k

zjk ≤ 1 ∀j (6)

zjk, xi ∈ {0, 1} ∀k, j, i (7)

Eqn. 3 represents the global objective function. ujk is the
utility function value of the V2RB Ψ(j|k), i.e. the best tour
of vehicle j to serve the request bundle k. zjk ∈ {0, 1} is a
decision variable taking the value 1 if this V2RB is assigned
and 0 otherwise. P is a large penalty term and the decision
variable xi ∈ {0, 1} refers to a previously not assigned request
i. According to Eqn. 4, xi takes the value of 1 if i, contained
in the set of unassigned requests Ru, is not assigned in this
optimization. Furthermore, Eqn. 4 assures that only one V2RB
k in K(i) (the set of all V2RBs containing request i) can be
assigned to a vehicle j. A very large value of P prioritizes
serving requests over saving VMT. Hence, the fleet operator
tries to maximize the number of assigned customers. Eqn. 5
constrains the assignment of already assigned requests, con-
tained in the set Ra, and the equality assures that previously
assigned requests must be assigned again. Nevertheless, the
corresponding V2RB of a request may change over time.
Finally, the constraint of Eqn. 6 assures that for each vehicle
j not more than one V2RB k can be assigned.
Because of the constraints in Eqn. 4 xi is no independent
variable. As also shown in [12] it can be absorbed by the cost
function values ujk for better implementation.

3) Vehicle Selection Heuristic for Advanced ODRP Re-
Optimization Policy: Although the proposed multi-stage algo-
rithm reduces the number of routes to be checked compared to
an exhaustive search by magnitudes, the exponential scaling
of the problem cannot be overcome. As a result, computation
time of new assignments exceeds real time for big problem
sizes (around 3000 vehicles with 5000 active requests to match
in our case). Especially for real-world applications this is a
problem that needs to be solved. In this study we introduce a
heuristic by prefiltering RV-matches to decrease computational
time needed for a new assignment while keeping the solution
as close to optimality as possible. We tackle this problem by
using only a subset of vehicles theoretically able to serve a
request defined by RV-compatibility based on three heuristic
rules. These rules aim to select only the most probable vehicles
to be assigned to serve the request and therefore may reduce
the search space for building new V2RBs drastically and
additionally reduce the solution space for the optimization
step.

All rules are computed for each new request sequentially
while the order of these requests is random. For each request
ri the set of possible vehicles defined by RV-compatibility Vi
is divided in the subsets Vi,a and Vi,u, the vehicles with a
current assignment and idle vehicles, respectively. With the
following three rules only a subset Vi,build of these vehicles
is chosen for creating the V2RBs.

Rule I: The first rule constrains the number of possible
vehicles from Vi,a for request ri to χa ∈ N. The decision
to add a vehicle vj to the list of possible vehicles Vi,build for
request ri is based on the function

f(vj |ri) =
mr

mrr
min
k,l

(tt(xj,l, ori) + tt(dri , xj,k))

| mrr 6= 0 , ∀vi ∈ Vi,a (8)



to measure the compatibility of the request ri to the vehicle’s
vj currently assigned tour. xj,m are the ordered stops of the
currently assigned tour including the current vehicle position.
The function tt(a, b) measures the travel time between location
a and b. While the second factor of equation (8) measures
the distance of the new request’s origin and destination to
the assigned route, the first factor measures the compatibility
of the new request with the requests corresponding to the
currently assigned route. mr is the number of the currently
assigned requests to the vehicle and mrr is the count of these
requests compatible with the new request based on RR. In case
the new request ist incompatible with a request currently on
board of the vehicle or mrr = 0 and mr > 1, this vehicle
will not be considered any further. If mrr = 0 and mr = 1
the vehicle will be considered as idle and therefore added to
Vi,u for the next heuristic rules (a reassignment of vehicles
with currently only one assigned request might nevertheless
be favorable). The first χa vehicles sorted in ascending order
of f(v) are chosen to be possible vehicles for this request and
added to Vi,build.

For Rule II and Rule III each vehicle is initialized with the
attributes ~vj with |~vj | = 1, a random 2d-vector with length
one, Nd,j = 0, the number of requests added to the vehicle
vj by Rule II, and Nn,j = 0, the number of requests added to
the vehicle vj by Rule III.

Rule II: The second rule is used to match requests with
similar travel directions into the same idle vehicles from Vi,u.
The normalized vector of travel ~odi with | ~odi| = 1 of the new
request ri is pointing into the direction of request origin oi
to the request destination di. Rule II comprises the following
steps:

1) Calculate the scalar product:

sj,i = ~vj · ~odi , ∀vi ∈ Vi,u (9)

2) Pick χu,d ∈ N vehicles with highest si,j , add them to
Vi,build and remove them from Vi,u.

3) For each of these vehicles, update the vehicle attributes

Nd,j ← Nd,j + 1 (10)

~vj ←
Nd,j

Nd,j + 1
~vj +

1

Nd,j + 1
~odi (11)

By this rule the vehicle vector tends to point in the average
direction of the added requests and therefore enhances clus-
tering of new requests with similar travel directions. The idea
behind this clustering is, that requests that can possibly be
pooled will be added to the same vehicles and thereby enable
higher V2RBs. A random initialized vehicle vector is used to
not induce any specific directions for the idle vehicles and for
the resulting clusters.

Rule III: The third rule is used to match requests to the
χu,n ∈ N nearest idle vehicles with an additional factor taking
into account the number of already added requests to a specific
vehicle to achieve an equal distribution of requests among
idle vehicles. For request ri with origin oi following steps
are computed:

Fig. 2. Map of Munich with operating area of the ride-pooling service
highlighted in blue and access points in yellow. The operating area covers
a surface of approximately 220 km2.

1) Calculate the distance to vehicle vj with current posi-
tion loc(vj) weighted by the number of already added
requests to this vehicle Nn,j :

ti,j = (Nn,j + 1) · tt(loc(vj), oi) , ∀vi ∈ Vi,u (12)

2) Pick χu,n ∈ N vehicles with smallest ti,j , add them to
Vi,build and remove the from Vi,u.

3) For these vehicles increase Nn,j by 1.
The factor Nn,j thereby is used to achieve a homogenous
distribution of request among vehicles to achieve a high
service rate, the main objective of the operator in this study.

The used heuristic will be characterized by the tuple
(χa, χu,d, χu,n) in the following, defining the number of
vehicles per request picked by the introduced heuristic rules.
With this heuristic, possible V2RBs for a maximum of χa +
χu,d + χu,n vehicles are computed per request.

III. CASE STUDY IN MUNICH, GERMANY

In the following, the described methodology is applied to
the network of Munich. The network graph and the customer
requests for the agent-based simulations are firstly introduced,
then the parameters of the scenarios are summarized. Subse-
quently, results of the simulations are illustrated and discussed.

A. Inputs from Traffic Model of Munich

The street network G, as well as hourly changing travel
times are extracted from a traffic micro-simulation model
described in [15]. The network consists of 19522 nodes and
40952 edges. The travel times for each edge e ∈ E are used
for both forecasting route travel times, as well as vehicle
movements. Shortest paths between customer access points
are preprocessed. All other shortest paths are calculated during
the simulation using Dijkstra’s algorithm with preprocessing
techniques from [16].

A share D of private vehicle trips within an operating
area are the basis for the demand of the ODM system. The
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Fig. 3. Main evaluation criteria of scenarios for different matching algorithms and demand densities. “adv” corresponds to the advanced ODRP algorithm.
If a heuristic is used, it is characterized by the tuple (χa, χu,d, χu,n). A demand density of 10% corresponds to a total daily trip number of approximately
120k trips, which are served by 2000 vehicles. a) Share of served user requests. b) Relative saved distance compared to every customer’s direct distance.

determination of the operating area is demand driven in this
study. An initial analysis of private vehicle origin-destination
(OD) relations showed an increasing trip density the closer
a district is located to Munich’s city center and a compact
operating area which is shown in Fig. 2 is defined.

Altogether, the private vehicle OD matrices count 1.2 mil-
lion trips per day between 1423 access points within the
resulting operating area partitioned into 15-minute slices. We
vary demand by globally modifying the adoption rate D, the
share of private vehicle trips replaced by the ride-pooling
system. The requests for the ODRP system are created by
Poisson processes, whereas the mean of the Poisson distribu-
tion corresponds to D · λOD for each origin-destination pair
(with original matrix entry λOD) within the operating area,
for each of the 15-minute time slices.

B. Scenario Setup
The constant as well as the variable parameters of the agent-

based simulations are summarized in TABLE I. To explore
the impact of demand density, the shares of 1%, 5%, 10%
and 15% from the total private vehicle OD trips within the
operating area are converted to requests for the ODRP system.
To extract the scaling property, we coupled fleet size linearly
to demand in this study’s scenarios. We started with a fleet size
of 200 vehicles for 1% demand and added 200 vehicles to the
fleet for every 1% increase in demand. This value has shown
to be a good tradeoff between fleet utilization and number
of served requests in test simulations. Additionally, we also
considered a boarding time of 30 seconds for every stop at
access points. We compare the performance of the advanced
ODRP algorithm without heuristic, the ODRP algorithm with
various proposed heuristic values and the insertion heuristic
policy.

Simulations are performed on a 3400 MHz Computer with
16 cores. Simulations with demand density 1%, 5%, 10% and
15% are computed on 2, 4, 8 and 16 cores in parallel, respec-
tively. Gurobi Solver is used for solving the ILP optimization
problem with a timeout set to 20s.

C. Results
To examine the performance of the proposed algorithms, all

scenarios are evaluated globally based on the optimization ob-

TABLE I
PARAMETERS OF ODRP SIMULATIONS

Constant Parameter Math Notation Value Unit
simulation time step ∆t 1 second
time between decision time
steps

∆tdec 30 second

boarding time TB 30 second
minimal waiting time tmin

wait 2 minute
maximal waiting time tmax

wait 8 minute
acceptable detour ratio ∆detour 40 %
vehicle capacity µ 4 pax
penalty for not assigned re-
quest

P 40000 km

Variable Parameter Math Notation Values Unit
penetration/adoption rate /
simulated demand

D 1, 5, 10, 15 %

fleet size m 200 ·D vehicle

jectives, number of served requests on the one hand and “saved
distance” on the other hand. For better comparison between
the different demand levels, “saved distance is normalized to
“relative saved distance” rsd, defined as

rsd =

(∑
r d

direct
r

)
−
∑
v dv∑

r d
direct
r

, (13)

where ddirectr is the direct route distance of the served request
r and dv is the total driven distances of vehicle v in the fleet.
If this value is negative, a larger distance is driven by the
system’s vehicles compared to the case where all the served
requests would drive on their own the fastest route due to
empty pick-up trips. For positive values, pooling of multiple
users overcomes this extra mileage.

1) Comparison of advanced ODRP algorithm with inser-
tion heuristic policy: Fig. 3 shows simulation results when
using advanced ODRP algorithm, the advanced ODRP algo-
rithm with two different heuristics and the insertion heuristic.
The optimization objectives “Served Requests” and “Relative
Saved Distance” are plotted for different demand levels.

Comparing the fraction of requests that could be served,
it is evident, that the advanced ODRP algorithm performs
way better than the simple insertion heuristic. The main
reason is that the insertion heuristic doesn’t benefit from re-
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Fig. 4. Speed Up for building the V2RB Database vs Performance of various heuristics. The average computational time throughout the whole simulation is
measured and compared. Reference scenario corresponds to the scenario without heuristic and same demand level.

optimizations due to fixed assignments. The advanced algo-
rithm however can reassign customers that haven’t boarded
the vehicle and can therefore react much more flexible to
dynamically incoming demand. Using the advanced algorithm,
an operator can therefore raise the number of served requests
by around 7% at 15% demand in our case.

Comparing the performance on the objective “relative saved
distance”, the advanced algorithm still performs better than
the insertion heuristic, but the difference is not that distinct
compared to the objective “served requests”. Due to the large
penalty value for unassigned requests in the optimization
problem (Eqn. 3) serving as much customers as possible is the
prioritized objective on which the advanced algorithm clearly
performs better. Of course, these additional served requests
have influence on the objective “relative saved distance”.

This evaluation gives a strong argument for fleet operators
to use a good matching algorithm. The differences in per-
formances are directly correlated to the revenues an operator
receives and the influence the mobility service has on the street
network.

2) Performance of heuristic for ODRP algorithm: Fig.
3 also shows the performance of two different heuristics,
namely (χa, χu,d, χu,n) = (10, 5, 5) and (χa, χu,d, χu,n) =
(20, 10, 10) are shown, with parameters described in the
previous section. The sum of these values corresponds to
the maximal number of vehicles that are considered in each
optimization time step for each incoming request. Therefore,
roughly speaking, the higher this number the closer the heuris-
tic is to the exact algorithm because more vehicles and their
designated requests are considered in the optimization time
step until all possibilities are fully exploited. This results in
the convergence of the simulations with heuristic to those
simulations without for low levels of demand (1%). Due
to small vehicle and request density during the simulation,
the heuristic hardly constrains the vehicle selection. How-
ever, even in simulations with high demand levels, nearly as
much requests could be served compared to scenarios without
heuristic. Serving requests is the primary objective in Eqn.
3 due to the large value of P . The very good service rates
of simulations with heuristic show that requests are being
distributed among the vehicles resulting in their assignment.
On the other hand, the reduction of “saved distance” is more
prominent due to the diminished solution space available for

the optimization step.
Fig. 4 compares the objectives and the speed-up achieved

for various heuristics. Values are depicted relative to the sim-
ulation with no heuristic used at the same demand level. The
speed-up only measures the computational time of building the
V2RB database in the described multistage advanced ODRP
algorithm. This step is most time consuming for large problem
sizes and it is the step the heuristic directly influences. Again,
the heuristic has nearly no influence for low demand scenarios,
because the problem size is too small. For all parameters
(χa, χu,d, χu,n) tested, the number of served requests is influ-
enced only minimally. Only around 1.4% less requests could
be served while gaining a speed up of over 8 in the case of the
(20, 10, 10) in the 15% scenario. In this scenario around 70%
of the “saved distance” could be maintained with the heuristic.
Interestingly, for the tested demand levels the performance of
the heuristics with same parameters is not strictly decreasing
with demand, although the restriction of the solution space
increases. The reason on the one hand is, that the difference
between optimization solutions gets statistically smaller and on
the other hand the used heuristic rules, mostly rule II and rule
III, are statistically more effective with bigger problem sizes.
Especially the vehicle vector of rule II (Eqn. 11) is converging
to a specific direction, defined by the set of added requests.

Measured globally, instead of just the time needed for
building the V2RB database, a speed-up of around 2.5 could
be achieved for the tested heuristics maximally. The heuris-
tic is most effective during peak times with high demand
density and it directly affects only the computational step,
when the database for feasible V2RBs is built. In Fig. 5
the computational times for the three most time consuming
algorithm steps, testing RR-& RV-compatibility, building the
V2RB database and solving the optimization problem, are
shown for a one day simulation. A 15% scenario without
heuristic and with (20, 5, 5)-heuristic is compared. It is evident
that the computational step of building the V2RB database
could be reduced significantly, while the RR-& RV-step is not
influenced by the heuristic at all. In these two scenarios the
average computational time of RR-& RV-step, Build V2RB
Database and Optimization could be reduced from 10.3s,
18.3s and 10.2s to 10.0s, 2.1s and 3.5s for with and without
heuristic, respectively. This shows, that the heuristic also has
a large impact on the optimization problem as it reduces the
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Fig. 5. Stacked plot of the computational time of the most costly algorithm steps at each decision time step. a) 15% scenario without heuristic. b) 15%
scenario with heuristic (20, 5, 5).

dimension of the solution space. Overall, a speedup of 2.5
could be achieved. This is expected to be even higher, when
computing larger problems, because the heuristic acts on the
computational steps scaling exponentially with problem size,
while the unaffected RR-& RV-step just scales quadratically.

IV. CONCLUSION

A. Summary

In this study we elaborated an advanced multi-step ODRP
algorithm, firstly introduced by [6] and compared its per-
formance on a simulation study for Munich, Germany with
an insertion heuristic algorithm. It could be shown, that by
using a more refined (but computationally more expensive)
algorithm an operator could serve an additional 8% of requests,
while saving an additional relative distance of 10%. This
stresses the importance of using advanced pooling algorithms
especially for real-world applications because of the direct
impact on operators revenue, customer satisfaction and the
service’s impact on the traffic state.

We introduced some speed-up techniques for the advanced
algorithm in addition to [6] and [12] based on keeping already
computed routing possibilities in memory in order to avoid
recomputing them in each decision time step again. A heuristic
based on the expectation of the most probable vehicles for
serving a request was developed. Acting on the computation-
ally most expensive steps, it leads to a speed-up of a factor of
8 in the corresponding steps and a speed-up of a factor of 2.5
overall while keeping the number of served requests almost
constant and losing around 30% of the secondary objective
“saved distance”. This shows, that a refined vehicle selection
heuristic can help counteracting the exponential scaling of the
pooling problem to retain real time computation.

B. Future Work

Firstly, we want to address the speed-up gained by keeping
computed V2RBs in memory compared to calculating them
again in each time step. It is expected that there is a tradeoff
between checking the feasibilities of tours feasible in the
former time step, but unfeasible in the current time step, and
just recomputing feasible tours which have been computed

before. This will therefore depend on how long a tour stays
feasible on average.

Despite showing promising results, we are convinced a more
refined vehicle selection heuristic can show even better results.
Finding meaningful KPI’s depending on request characteristic
and fleet state could help for the development. Using neural
networks for a preselection of used vehicles will also be tested
in future.

Additionally, we want to include short-term forecasts of
demand in the assignment process and a pooling specific
relocation algorithm.

Finally, we want to connect this framework with a traffic
micro-simulator to study effects on the street network in more
detail.
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